A MÍDIA ABAIXO DA MÉDIA
JORNALISTAS FALTARAM AULA SOBRE ESTATÍSTICA
Caros colegas, a falta de conhecimento em estatística causou uma grande confusão relatada pelo jornalista Luis Nassif. Verifique essa confusão no texto abaixo
Por Luís Nassif em 19/09/2011 na edição 660
A MÍDIA ABAIXO DA MÉDIA
Reproduzido do blog do autor , 14/9/2011 8:00
Poucas vezes se viu um episódio coletivo de mídia tão nonsense quanto o da divulgação dos resultados do Enem (Exame Nacional do Ensino Médio). Os resultados foram dentro do esperado: melhoria de 10 pontos na média geral. Em 2009, o Enem estava em 500 pontos. A meta era chegar ao longo da década a 600 pontos – o que significaria melhorar 10 pontos por ano. Apesar do aumento de inscritos – de 828 mil para 1,011 milhão – chegou-se aos 10 pontos.
De repente, o noticiário online foi invadido por estranhas manchetes: a de que a maioria dos alunos do Enem tinha ficado “abaixo da média”. O jornal *O Globo* foi fulminante: “Mais da metade dos estudantes ficou abaixo da média do Enem 2010”. Na UOL, não se deixou por menos: “Enem `reprova´ 63,64% das escolas”. Esse número equivale àquelas que ficaram abaixo da média.
Criou-se um samba do crioulo doido. Na maioria absoluta das estatísticas, a tendência é se ter uma maioria abaixo da média. Se todos melhoram, a média melhora, mas sempre continuará tendo uma parte abaixo da média e outra acima. Suponha uma classe de sete pessoas, com três notas 5, duas notas 4 e uma nota 3. A média será 4,28. Logo, 43% (três alunos) estarão acima da média e 57% (quatro alunos) abaixo da média. Suponha agora que a classe melhore e fique com duas notas 10 e cinco notas 7. A média será 7,86. Mas 71% dos alunos estarão abaixo da meta contra 29% acima.
*Quando explicou, a confusão aumentou*
Na entrevista coletiva sobre o Enem, praticamente todos os jornalistas insistiam na informação de que a maioria das notas tinha sido abaixo da média. O samba endoidou tanto que a presidente Dilma Rousseff chamou o ministro Fernando Haddad ao Palácio para saber que loucura era aquela.
O diálogo foi mais ou menos assim:
Dilma: Haddad, como é isso? Eles estão falando que há muitas escolas abaixo da média. Como surgiu essa confusão? Não sabem o que é a média em uma estatística?
Haddad: Presidente, o que posso fazer? Passei a tarde explicando para eles o conceito de média na estatística. Tentei explicar o que era uma distribuição estatística, que em geral forma uma curva, que a média (média aritmética de um conjunto de números) e a mediana (maior frequência de números na amostragem) são muito próximas, mas pareciam não entender. Cheguei a sugerir
que ligassem para um matemático, um estatístico para se informarem porque
daqui a vinte, trinta, cinquenta anos vão fazer a mesma conta (do percentual
de notas abaixo da média) e vai dar a mesma coisa.
Foi em vão. Dilma encerrou a conversa dizendo que iriam especular que aconvocação de Haddad ao Palácio teria sido para se explicar. Chamou o líder do governo na Câmara, Cândido Vacarezza, presente à reunião, e pediu que desse uma entrevista informando que a presidente tinha ficado satisfeita com o resultado e manifestava sua preocupação com a confusão que a imprensa fizera com o conceito de média.
Pediu ainda que Vacarezza fizesse uma última tentativa de explicar o que era média aritmética. Vacarezza explicou. Mas a confusão aumentou mais ainda.
***
[Luis Nassif é jornalista]
Caros colegas, a falta de conhecimento em estatística causou uma grande confusão relatada pelo jornalista Luis Nassif. Verifique essa confusão no texto abaixo
Por Luís Nassif em 19/09/2011 na edição 660
A MÍDIA ABAIXO DA MÉDIA
Reproduzido do blog do autor
Poucas vezes se viu um episódio coletivo de mídia tão nonsense quanto o da divulgação dos resultados do Enem (Exame Nacional do Ensino Médio). Os resultados foram dentro do esperado: melhoria de 10 pontos na média geral. Em 2009, o Enem estava em 500 pontos. A meta era chegar ao longo da década a 600 pontos – o que significaria melhorar 10 pontos por ano. Apesar do aumento de inscritos – de 828 mil para 1,011 milhão – chegou-se aos 10 pontos.
De repente, o noticiário online foi invadido por estranhas manchetes: a de que a maioria dos alunos do Enem tinha ficado “abaixo da média”. O jornal *O Globo* foi fulminante: “Mais da metade dos estudantes ficou abaixo da média do Enem 2010”. Na UOL, não se deixou por menos: “Enem `reprova´ 63,64% das escolas”. Esse número equivale àquelas que ficaram abaixo da média.
Criou-se um samba do crioulo doido. Na maioria absoluta das estatísticas, a tendência é se ter uma maioria abaixo da média. Se todos melhoram, a média melhora, mas sempre continuará tendo uma parte abaixo da média e outra acima. Suponha uma classe de sete pessoas, com três notas 5, duas notas 4 e uma nota 3. A média será 4,28. Logo, 43% (três alunos) estarão acima da média e 57% (quatro alunos) abaixo da média. Suponha agora que a classe melhore e fique com duas notas 10 e cinco notas 7. A média será 7,86. Mas 71% dos alunos estarão abaixo da meta contra 29% acima.
*Quando explicou, a confusão aumentou*
Na entrevista coletiva sobre o Enem, praticamente todos os jornalistas insistiam na informação de que a maioria das notas tinha sido abaixo da média. O samba endoidou tanto que a presidente Dilma Rousseff chamou o ministro Fernando Haddad ao Palácio para saber que loucura era aquela.
O diálogo foi mais ou menos assim:
Dilma: Haddad, como é isso? Eles estão falando que há muitas escolas abaixo da média. Como surgiu essa confusão? Não sabem o que é a média em uma estatística?
Haddad: Presidente, o que posso fazer? Passei a tarde explicando para eles o conceito de média na estatística. Tentei explicar o que era uma distribuição estatística, que em geral forma uma curva, que a média (média aritmética de um conjunto de números) e a mediana (maior frequência de números na amostragem) são muito próximas, mas pareciam não entender. Cheguei a sugerir
que ligassem para um matemático, um estatístico para se informarem porque
daqui a vinte, trinta, cinquenta anos vão fazer a mesma conta (do percentual
de notas abaixo da média) e vai dar a mesma coisa.
Foi em vão. Dilma encerrou a conversa dizendo que iriam especular que aconvocação de Haddad ao Palácio teria sido para se explicar. Chamou o líder do governo na Câmara, Cândido Vacarezza, presente à reunião, e pediu que desse uma entrevista informando que a presidente tinha ficado satisfeita com o resultado e manifestava sua preocupação com a confusão que a imprensa fizera com o conceito de média.
Pediu ainda que Vacarezza fizesse uma última tentativa de explicar o que era média aritmética. Vacarezza explicou. Mas a confusão aumentou mais ainda.
***
[Luis Nassif é jornalista]
Comentários
Educadora, queremos fazer um pedido: gostaríamos que você convidasse 5 blogs de sua lista de seguidores para conhecerem o projeto Educadores Multiplicadores.
Só lembramos que os blogs devem ter conteúdos com FOCO EDUCACIONAL.
Certo de sua atenção, agradecemos em nome de todos os Educadores Multiplicadores.
http://www.educadoresmultiplicadores.com.br/
http://www.marquecomx.com.br/
Fiquemos na Paz de Deus e até breve.